PERFORMANCE OF FIG (Ficus carica L. cv. IPOH BLUE GIANT) FRUIT STORED AT VARIOUS STORAGE TEMPERATURES

Nur Athirah Binti Mat Jusoh
Faculty of Agriculture
Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Email: nurathirahmatjusoh94@gmail.com

Phebe Ding
Faculty of Agriculture and Food Sciences,
Universiti Putra Malaysia Bintulu Sarawak Campus, 97008 Bintulu, Sarawak, Malaysia
Faculty of Agriculture
Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Email: phebe@upm.edu.my

Choon Sea Yeat
Faculty of Agriculture
Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Email: choonseayeat@upm.edu.my

ABSTRACT

Ficus carica L. or fig which is a member of mulberry family (Moraceae) is believed to have originated in Southern Arabia. It has been widely cultivated all over the world especially in California, USA. Fig is a very perishable fruit with short shelf life. The optimum storage temperature is one of the compulsory factors in prolonging fruits shelf life. However, there is lack of study on optimum storage temperature of fresh fig fruits especially on the Ipoh Blue Giant (IBG) cultivar planted in Malaysia. Fig cv. IBG is a large, purple brown skin, pinkish flesh, sweet and rich flavour fruits. It is one of a famous fig variety that have been cultivated and consumed in Malaysia. Thus, a study was conducted to observe the postharvest performance of fig cv. IBG stored at 5, 10 and 15 ˚C. The postharvest performance of fig fruit was determined according to its visual appearance during storage which includes water loss, colour changes and also disease incidence. A 5-point hedonic scales was used to evaluate the fruit appearance during storage, where 0 = 0% area affected, 1 = 1-5% area affected, 2 = 6-15% area affected, 3 = 16-30% area affected, and 4 = 31-100% area affected. Observation was carried out for 5 weeks and the performance of fig fruits were recorded at weekly basis. Results showed that fig fruit that stored at 5 ˚C can be stored for 5 weeks as compared to fruit that stored at 10 and 15 ˚C which only lasted for 4 and 2 weeks, respectively. Fig fruits stored at 10 and 15 ˚C lost its shelf life mainly due to disease and water loss. From the results, 5 ˚C is recommended as optimum storage temperature for fig cv. IBG

Key words: Postharvest quality, water loss, disease incidence, colour changes.

INTRODUCTION

Ficus carica L. or fig which is a member of mulberry family (Moraceae) is believed to have originated in Southern Arabia (Stover et al., 2007a). It has been widely cultivated all over the world especially in California, USA. Fig cv. Ipoh Blue Giant (IBG) has been classified as common-type fig with dark skin (Condit, 1955). Fig cv. IBG or more widely known as Improved Brown Turkey, is a large, purple brown skin, pinkish flesh, sweet and rich flavour fruits. It is one of famous fig variety that have been cultivated and consumed in Malaysia (Tuan Musa Yaacob, 2015). Fig cv. IBG rather to be consumed fresh than dried because of poor colour development after dying (Condit, 1955).

Fresh fig fruit is very perishable and have a short shelf life (Stover et al., 2007b). Microorganism such as fungus can grow rapidly on the fresh fig fruit due to high sugar content in fig fruit (Vebditti et al., 2005). Besides, fig fruit also a climacteric fruit that sensitive to ethylene (Marei & Crane, 1971). Studies showed that these postharvest problems faced by fresh fig fruit can be overcome by edible coating, suitable packaging and low temperature storage (Allegra et al., 2017; Reyes-Avalos et al., 2016; Sozzi et al., 2005).

The optimum storage temperature is one of the compulsory factors in prolonging fruits shelf life (Wills et al., 2007). However, the study on the optimum storage temperature for fresh fig fruit especially cv. IBG is lacking and has not highlighted by any researchers yet. Thus, the objective of this experiment was to evaluate the performance of postharvest fresh fig fruit cv. IBG stored at various temperatures. The study of optimum storage temperature of fresh fig fruit will improve its shelf life and indirectly reducing the postharvest loss.

MATERIALS AND METHODS

Fig fruits cv. IBG that planted in the rain shelter at Selangor Fruit Valley were harvested. The fig fruit were stored at three different temperatures (5, 10 and 15 ˚C) with two replications for each temperature. Postharvest performance of fig fruits during
storage was observed based on changes in visual appearances which were water loss, colour changes and disease incidence. The visual appearance were evaluated according to 5-point hedonic scales, where 0 = 0% area affected, 1 = 1-5% area affected, 2 = 6-15% area affected, 3 = 16-30% area affected, and 4 = 31-100% area affected (Phebe & Ong, 2010). The observation was carried out for 5 weeks and the evaluation of fig fruits performance were recorded at weekly basis.

RESULTS

Table 1: Performance of postharvest fresh fig cv. Ipoh Blue Giant stored at 5, 10 and 15 °C during storage week 0, 1, 3 and 5

<table>
<thead>
<tr>
<th>Storage temperature</th>
<th>Storage week 0</th>
<th>Storage week 1</th>
<th>Storage week 3</th>
<th>Storage week 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coloured box indicates the level of fresh fig fruit that have been affected based on 5-point hedonic scales.
- Water loss
- Colour changes
- Disease incidence

DISCUSSION

The results of the study showed that fresh fig fruit cv. IBG experienced high water loss when stored at 10 and 15 °C. The fig fruit lost almost 100% of its water content after stored for 5 and 3 weeks at 10 °C and 15 °C, respectively. The fresh fig fruit stored at 10 and 15 °C was severely infected by diseases while those stored at 5 °C showed mild infection. The finding from this study indicates that low storage temperature is able to retard microbial growth. According to Caleb et al. (2013), low storage temperature could retard growth rate of yeast and mold in pomegranate arils.
The colour of fresh fig fruit changed gradually when stored at the three storage temperatures in the present study. Fig fruit that stored at 5°C showed least colour change as compared to fig fruit that stored at 10 and 15°C. Fig fruit is a climacteric fruit which responds towards ethylene. Ethylene has stimulated the synthesis of pigment which causes colour changes of fig fruit during storage. Similar finding was also reported in dabai (Canarium odontophyllum Miq.) which ethylene caused colour change in skin and flesh of dabai (Ding & Tec, 2010). However, the process was delayed when the fruit was stored at low storage temperature (Mutari & Debbie, 2011; Wills et al., 2007).

The fresh fig fruit that stored at 10 and 15°C were discarded at week 3 and 5, respectively. However, fig fruit that stored at 5°C can be consumed after storage for 5 weeks with minimal fungus infection. This is because ethylene in fig fruit tends to stimulate softening and decaying the fruit when storage temperature higher than 5°C. The evaluations from visual appearance of fresh fig fruit shows that low storage temperature have improved the shelf life of fruit and reduced postharvest loss.

CONCLUSION

The results from the present study indicated that 5°C is the optimum storage temperature for fresh fig fruit cv. IBG. This is because fig fruit that stored at 5°C showed least water loss, colour changes and disease infection after 5 weeks of storage.

ACKNOWLEDGEMENT

This work was supported by the Universiti Putra Malaysia under the Putra Grant (GPB): UPM/800-3/3/1/9629600.

REFERENCES

